Sang-Jin Lee

Professor of Department of Mathematics of Konkuk Univ.



Contact Information

Address Sang-Jin Lee
Department of Mathematics, Konkuk Univ.
Gwangjin-gu, Seoul 143-701, Korea
Telephone +82 (0)2 450-3407
Fax +82 (0)2 458-1952
E-mail sangjin (at) konkuk.ac.kr
URL http://konkuk.ac.kr/~sangjin


Research Interests

- Braid Group
- Geometric group theory
- Low dimensional Topology
- Cryptography


Publications

  1. Ruth Corran, E.-K. Lee and S.-J. Lee,
    Braid groups of imprimitive complex reflection groups,
    Journal of Algebra 427 (2015) 387-425.
    An earlier version is available from arXiv:1305.3455.

  2. E.-K. Lee and S.-J. Lee,
    Unknotting number and genus of 3-braid knots,
    Journal of Knot Theory and Its Ramifications, vol. 22, no. 9, pp. 1350047.1-1350047.18, 2013.
    An earlier version is available from arXiv:1305.3455.

  3. E.-K. Lee and S.-J. Lee,
    Periodic elements in Garside groups,
    J. Pure Appl. Algebra 215 (2011), no. 10, 2295-2314.
    An earlier version is available from arXiv:1004.5308.

  4. E.-K. Lee and S.-J. Lee,
    Uniqueness of roots up to conjugacy for some affine and finite type Artin groups,
    Math. Zeit. 256 (2010), no. 3, 571-587.
    An earlier version is available from arXiv:0711.0091.

  5. E.-K. Lee and S.-J. Lee,
    Dual presentation and linear basis of the Temperley-Lieb algebras,
    Journal of KMS 47 (2010), no. 3, 445-454.
    An earlier version is available from arXiv:math.GR/0403429.

  6. E.-K. Lee and S.-J. Lee,
    Injectivity on the set of conjugacy classes of some monomorphisms between Artin groups,
    J. Algebra 323 (2010), no. 7, 1879-1907.
    An earlier version is available from arXiv:0802.2314.

  7. E.-K. Lee and S.-J. Lee,
    Some power of an element in a Garside group is conjugate to a periodically geodesic element,
    Bull. Lond. Math. Soc. 40 (2008), no. 4, 593-603.
    An earlier version is available from arXiv:math.GN/0604144.

  8. E.-K. Lee and S.-J. Lee,
    A Garside-theoretic approach to the reducibility problem in braid groups,
    J. Algebra 320 (2008), no. 2, 783-820.
    An earlier version is available from arXiv:math.GT/0506188.

  9. E.-K. Lee and S. J. Lee,
    Abelian subgroups of Garside groups,
    Comm. Algebra 36 (2008), no. 3, 1121-1139.
    An earlier version is available from arXiv:math.GT/0609683.

  10. E.-K. Lee and S. J. Lee,
    Translation numbers in a Garside group are rational with uniformly bounded denominators,
    J. Pure Appl. Algebra 211 (2007), no. 3, 732-743.
    An earlier version is available from arXiv:math.GT/0604061.

  11. E.-K. Lee and S. J. Lee,
    A Counter-based MAC Revisited: Weakening the Underlying Assumption,
    J. Appl. Math. & Computing 24 (2007), no. 1-2, 461-470.

  12. S. J. Lee,
    Garside groups are strongly translation discrete,
    J. Algebra, 309 (2007), 594-609.
    An earlier version is available from arXiv:math.GT/0411470.

  13. S. J. Lee and W. T. Song,
    The kernel of Burau(4) \otimes Zp is all pseudo-Anosov,
    Pacific J. Math., 219 (2005), no. 2, 303-310.
    An earlier version is available from arXiv:math.GT/0403347.

  14. S. J. Lee and E.-K. Lee,
    Potential Weaknesses of the Commutator Key Agreement Protocol based on Braid Groups,
    EUROCRYPT 2002, 14-28, LNCS 2332, Springer, Berlin, 2002.

  15. J. C. Cha, K. H. Ko, S. J. Lee, J. W. Han and J. H. Cheon,
    An efficient implementation of braid groups,
    ASIACRYPT 2001, 144-156, LNCS 2248, Springer, Berlin, 2001.

  16. J. S. Birman, K. H. Ko and S. J. Lee,
    The infimum, supremum and geodesic length of a braid conjugacy class,
    Adv. Math., 164 (2001), no. 1, 41-56.
    An earlier version is available from arXiv:math.GT/0003125.

  17. E.-K. Lee, S. J. Lee and S. Hahn,
    Pseudorandomness from braid groups,
    CRYPTO 2001, 486-502, LNCS 2139, Springer, Berlin, 2001.

  18. K. H. Ko, S. J. Lee, J. H. Cheon, J. W. Han, J. Kang and C. Park,
    New Public-key Cryptosystem using Braid Groups,
    CRYPTO 2000, 166-183, LNCS 1880, Springer, Berlin, 2000.

  19. K. H. Ko and S. J. Lee,
    Flypes of closed 3-braids in the standard contact space,
    Journal of KMS 36 (1999), 51-71.

  20. J. S. Birman, K. H. Ko and S. J. Lee,
    A New Approach to the Word and Conjugacy problems in the Braid Groups,
    Adv. Math., 139 (1998), 322-353.

  21. E. S. Kang, K. H. Ko and S. J. Lee,
    Band-generator presentation for the 4-braids,
    Topology Appl. 78 (1997), 39-60.

  22. K. H. Ko and S. J. Lee,
    Genera of some closed 4-braids,
    Topology Appl. 78 (1997), 61-77.


Conferences co-organized


Education and Work Experiences

1988.3 - 1992.2 B.S. at KAIST
1992.3 - 1994.2 M.S. at KAIST
1994.3 - 2000.2 Ph.D. at KAIST
2000.3 - 2001.3 Research Fellow at KAIST, Taejon, Korea
2001.4 - 2002.2 Research Fellow at CMI, Marseille, France
2002.3 - 2003.8 Research Fellow at KIAS, Seoul, Korea
2003.9 - 2007.8 Assistant professor at Dept. Mathematics, Konkuk Univ., Seoul, Korea
2007.9 - 2012.08 Associate professor at Dept. Mathematics, Konkuk Univ., Seoul, Korea
2012.9 - Professor at Dept. Mathematics, Konkuk Univ., Seoul, Korea


Recent Talks