
Part One: Automata and Languages
Chapter 1. Regular Languages

Wonhong Nam

Konkuk University

September 13, 2017

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 1 / 82

Part One: Automata and Languages

What is a computer?

It is perhaps a silly question, but these real computers are quite
complicated—too much so to allow us to set up a manageable
mathematical theory of them directly.

Instead we use an idealized computer called a computational
model.

As with any model in science, a computational model may be
accurate in some ways but perhaps not in others.

Thus we will use several different computational models,
depending on the features we want to focus on.

We begin with the simplest model, called the finite state
machine or finite automaton.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 2 / 82

1.1 Finite Automata

Finite automata are good models for computers with an extremely
limited amount of memory.

Many useful things! In fact, we interact with such computers all the
time, as they lie at the heart of various electromechanical devices.

The controller for an automatic door is one example of such a device.

An automatic door has a pad in front to detect the presence of a
person about to walk through the doorway.
Another pad is located to the rear of the doorway so that the
controller can hold the door open long enough for the person to
pass all the way through and also so that the door does not strike
someone standing behind it as it opens.
The controller is in either of two states: “OPEN” or “CLOSED.”

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 3 / 82

Automatic Door Controller

For example, a controller might start in state CLOSED and receive the
series of input signals FRONT, REAR, NEITHER, FRONT, BOTH,
NEITHER, REAR, and NEITHER.
It then would go through the series of states CLOSED (starting), OPEN,
OPEN, CLOSED, OPEN, OPEN, CLOSED, CLOSED, and CLOSED.
Thinking of an automatic door controller as a finite automaton is useful
because that suggests standard ways of representation as in Figures 1.2.
This controller is a computer that has just a single bit of memory,
capable of recording which of the two states the controller is in.
Other common devices have controllers with somewhat larger memories,
e.g., an elevator controller.
Controllers for various household appliances such as dishwashers and
electronic thermostats, as well as parts of digital watches and calculators,
are additional examples of computers with limited memories.
The design of such devices requires keeping the methodology and
terminology of finite automata in mind.

Finite automata and their probabilistic counterpart Markov chains are

useful tools when we are attempting to recognize patterns in data.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 4 / 82

Finite Automaton

Figure 1.4 is called the finite automaton (state diagram) of M1.
It has three states, labeled q1, q2, and q3.
The start state, q1, is indicated by the arrow pointing at it from
nowhere.
The accept state, q2, is the one with a double circle.
The arrows going from one state to another are called transitions.
When this automaton receives an input string such as 1101, it processes
that string and produces an output which is either accept or reject.
Accept because M1 is in an accept state q2 at the end of the input.
Experimenting with this machine on a variety of input strings reveals
that it accepts the strings 1, 01, 11, and 0101010101.
In fact, M1 accepts any string that ends with a 1.
In addition, it accepts strings 100, 0100, 110000, and 0101000000, and
any string that ends with an even number of 0s following the last 1.

It rejects other strings, such as 0, 10, 101000.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 5 / 82

Formal Definition of a Finite Automaton

Definition 1.5

A finite automation is a 5-tuple (Q,Σ, δ, q0, F), where
1 Q is a finite set called the states,

2 Σ is a finite set called the alphabet,

3 δ : Q× Σ→ Q is the transition function,

4 q0 ∈ Q is the start state (initial state), and

5 F ⊆ Q is the set of accept states (goal states).

The transition function δ specifies exactly one next state for each
possible combination of a state and an input symbol.

0 accept states is allowable.

We can use the notation of the formal definition to describe individual

finite automata by specifying each of the five parts listed in Definition

1.5.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 6 / 82

Formal Definition of a Finite Automaton

For example, let’s return to the finite automaton M1 we discussed earlier.

M1 = (Q,Σ, δ, q1, F), where Q = {q1, q2, q3}, Σ = {0, 1}, δ below, q1 is
the start state, and F = {q2}.

If A is the set of all strings that machine M accepts, we say that A is the
language of machine M and write L(M) = A.

We say that M recognizes A or that M accepts A.

Because the term accept has different meanings when we refer to
machines accepting strings and machines accepting languages, we prefer
the term recognize for languages in order to avoid confusion.

In our example, let A = {w | w contains at least one 1 and an even
number of 0s following the last 1}.
Then L(M1) = A, or equivalently, M1 recognizes A.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 7 / 82

Examples of Finite Automata

Example 1.7: Here is the state diagram of finite automaton M2.

In the formal description M2 = ({q1, q2}, {0, 1}, δ, q1, {q2}).
A good way to begin understanding any machine is to try it on some
sample input strings. E.g., 0, 1, 00, 01, 10, 11, · · · .
L(M2) = {w | w ends in a 1}.

Example 1.9: Consider the finite automaton M3.

Because the start state is also an accept state, M3 accepts the empty
string ε.

L(M3) = {w | w is the empty string ε or ends in a 0}.
Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 8 / 82

Examples of Finite Automata

Example 1.11: The following figure shows a five-state machine M4.

Some experimentation shows that it accepts strings a, b, aa, bb, and
bab, but not strings ab, ba, or bbba.

If the first symbol in the input string is a, then it goes left and accepts
when the string ends with an a.

Similarly, if the first symbol is a b, the machine goes right and accepts
when the string ends in b.

So M4 accepts all strings that start and end with a or that start and end

with b.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 9 / 82

Examples of Finite Automata

Example 1.13: Figure 1.14 shows machine M5.

Σ = {〈reset〉, 0, 1, 2}. We treat 〈reset〉 as a single symbol.

Machine M5 keeps a running count of the sum of the numerical input
symbols it reads, modulo 3.

Every time it receives the 〈reset〉 symbol it resets the count to 0.

It accepts if the sum is 0 modulo 3, or in other words, if the sum is a

multiple of 3.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 10 / 82

Formal Definition of Computation

So far we have described finite automata informally, using state
diagrams, and with a formal definition, as a 5-tuple.

Next we do the same for a finite automaton’s computation. We already
have an informal idea of the way it computes, and we now formalize it
mathematically.

Let M = (Q,Σ, δ, q0, F) be a finite automaton and let w = w1w2 · · ·wn

be a string where each wi is a member of the alphabet Σ. Then M
accepts w if a sequence of states r0, r1, . . . , rn in Q exists with three
conditions:

1 r0 = q0,
2 δ(ri, wi+1) = ri+1, for i = 0, . . . , n− 1, and
3 rn ∈ F .

We say that M recognizes language A if A = {w |M accepts w}.

Definition 1.16
A language is called a regular language if some finite automaton recognizes

it.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 11 / 82

Example 1.17

Take machine M5 from Example 1.13.

Let w be the string 10〈reset〉22〈reset〉012.

Then M5 accepts w according to the formal definition of
computation because the sequence of states it enters when
computing on w is

q0, q1, q1, q0, q2, q1, q0, q0, q1, q0,

which satisfies the three conditions.

The language of M5 is

L(M5) = {w | the sum of the symbols in w is 0 modulo 3,
except that 〈reset〉 resets the count to 0}.

As M5 recognizes this language, it is a regular language.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 12 / 82

Designing Finite Automata

Whether it be of automaton or artwork, design is a creative process.

Put yourself in the place of the machine you are trying to design and
then see how you would go about performing the machine’s task.

Suppose that you are given some language and want to design a finite
automaton that recognizes it.

Pretending to be the automaton, you receive an input string and must
determine whether it is a member of the language.

You get to see the symbols in the string one by one.

After each symbol you must decide whether the string seen so far is in
the language.

You have to figure out what you need to remember about the string as
you are reading it.

You need to remember only certain crucial information.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 13 / 82

Suppose that the alphabet is {0, 1} and the language
consists of all strings with an odd number of 1s.

You want to construct a finite automaton E1 to recognize this language.

You start getting an input string of 0s and 1s symbol by symbol.

Do you need to remember the entire string seen so far in order to
determine whether the number of 1s is odd?

Simply remember whether the number of 1s seen so far is even or odd
and keep track of this information as you read new symbols.

Once you have determined the necessary information to remember about
the string, you represent this information as a finite list of possibilities.

In this instance, the possibilities would be
1 even so far, and
2 odd so far.

These are the states of E1, as shown here.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 14 / 82

The language with all strings with an odd number of 1s.

Next, you assign the transitions by seeing how to go from one possibility
to another upon reading a symbol.

So, if state qeven represents the even possibility and state qodd represents
the odd possibility, you would set the transitions to flip state on a 1 and
stay put on a 0.

Next, you set the start state to be the state corresponding to the
possibility associated with having seen 0 symbols so far.

In this case the start state corresponds to state qeven because 0 is an even
number.

Last, set the accept states.

Set qodd to be an accept state because you want to accept when you have
seen an odd number of 1s.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 15 / 82

Example 1.21: E2 to recognize the regular language of
all strings that contain the string 001 as a substring

For example, 0010, 1001, 001, and 11111110011111 are all in the
language, but 11 and 0000 are not.
As symbols come in, you would initially skip over all 1s.
If you come to a 0, then you note that you may have just seen the first of
the three symbols in the pattern 001 you are seeking.
If at this point you see a 1, there were too few 0s, so you go back to
skipping over 1s.
But if you see a 0 at that point, you should remember that you have just
seen two symbols of the pattern.
Now you simply need to continue scanning until you see a 1.
If you find it, remember that you succeeded in finding the pattern and
continue reading the input string until you get to the end.
So there are four possibilities: You

1 haven’t just seen any symbols of the pattern,
2 have just seen a 0,
3 have just seen 00, or
4 have seen the entire pattern 001.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 16 / 82

Example 1.21: all strings with 001 as a substring

Assign the states q, q0, q00, and q001 to these possibilities.

You can assign the transitions by observing that from q reading a 1 you
stay in q, but reading a 0 you move to q0.

In q0 reading a 1 you return to q, but reading a 0 you move to q00.

In q00, reading a 1 you move to q001, but reading a 0 leaves you in q00.

Finally, in q001 reading a 0 or a 1 leaves you in q001.

The start state is q, and the only accept state is q001.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 17 / 82

The Regular Operations

So far, we introduced and defined finite automata and regular languages.

We now begin to investigate their properties. Doing so will help develop
a toolbox of techniques to use.

In arithmetic, the basic objects are numbers and the tools are operations
for manipulating them, such as + and ×.

In the theory of computation, the objects are languages and the tools
include operations specifically designed for manipulating them.

We define three operations on languages, called the regular

operations, and use them to study properties of the regular languages.

Definition 1.23
Let A and B be languages. We define the regular operations union,

concatenation, and star as follows.

Union: A ∪B = {x | x ∈ A or x ∈ B}.
Concatenation: A ◦B = {xy | x ∈ A and y ∈ B}.
Star: A∗ = {x1x2 . . . xk | k ≥ 0 and xi ∈ A}.

The empty string ε is always a member of A∗, no matter what A is.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 18 / 82

The Regular Operations

Example 1.24

Let the alphabet Σ be the standard 26 letters {a, b, . . . , z}. If A = {good,

bad} and B = {boy, girl}, then

A ∪B = {good, bad, boy, girl},
A ◦B = {goodboy, goodgirl, badboy, badgirl}, and

A∗ = {ε, good, bad, goodgood, goodbad, badgood, badbad,

goodgoodgood, goodgoodbad, goodbadgood, goodbadbad, . . . }.

A collection of objects is closed under some operation if applying that
operation to members of the collection returns an object still in the
collection.

We show that the collection of regular languages is closed under all three

of the regular operations.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 19 / 82

Union operation

Theorem 1.25
The class of regular languages is closed under the union operation.

In other words, if A1 and A2 are regular languages, so is A1 ∪A2.

Proof idea: proof by construction

Because A1 and A2 are regular, we know that some finite automaton M1

recognizes A1 and some finite automaton M2 recognizes A2.

To prove that A1 ∪A2 is regular we demonstrate a finite automaton, call
it M , that recognizes A1 ∪A2.

We construct M from M1 and M2.

Machine M must accept its input exactly when either M1 or M2 would
accept it.

It works by simulating both M1 and M2 and accepting if either of the
simulations accept.

Perhaps it first simulates M1 on the input and then simulates M2 on the

input. No.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 20 / 82

Proof idea: proof by construction

As the input symbols arrive one by one, you simulate both M1 and M2

simultaneously.

All you need to remember is the state that each machine would be in if it
had read up to this point in the input.

Therefore you need to remember a pair of states.

How many possible pairs are there?

If M1 has k1 states and M2 has k2 states, the number of pairs of states is
the product k1 × k2.

The transitions of M go from pair to pair, updating the current state for
both M1 and M2.

The accept states of M are those pairs wherein either M1 or M2 is in an

accept state.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 21 / 82

Proof: proof by construction

Let M1 recognize A1, where M1 = (Q1,Σ, δ1, q1, F1), and M2 recognize
A2, where M2 = (Q2,Σ, δ2, q2, F2).

Construct M to recognize A1 ∪A2, where M = (Q,Σ, δ, q0, F).

Q = {(r1, r2) | r1 ∈ Q1 and r2 ∈ Q2}.
This set is the Cartesian product of Q1 and Q2 and is written Q1 ×Q2.

Σ, the alphabet, is the same as in M1 and M2 .

The theorem remains true if they have different alphabets, Σ1 and Σ2.

δ, the transition function, is defined as follows.

For each (r1, r2) ∈ Q and each a ∈ Σ, let
δ((r1, r2), a) = (δ1(r1, a), δ2(r2, a)).

q0 is the pair (q1, q2).

F is the set of pairs in which either member is an accept state of M1 or
M2. We can write it as F = {(r1, r2) | r1 ∈ F1 or r2 ∈ F2}.
This construction is fairly simple, and thus its correctness is evident from
the strategy described in the proof idea.

The class of regular languages is closed under the union operation.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 22 / 82

Theorem 1.26

Theorem 1.26
The class of regular languages is closed under the concatenation
operation.

In other words, if A1 and A2 are regular languages then so is A1 ◦A2.

Instead of constructing automaton M to accept its input if either M1 or
M2 accepts, it must accept if its input can be broken into two pieces,
where M1 accepts the first piece and M2 accepts the second piece.

The problem is that M doesn’t know where to break its input (i.e.,
where the first part ends and the second begins).

To solve this problem we introduce a new technique called

nondeterminism.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 23 / 82

1.2 Nondeterminism

Nondeterminism is a useful concept that has had great impact on the
theory of computation.

So far, every step of a computation follows in a unique way from the
preceding step.

When the machine is in a given state and reads the next input symbol,
we know what the next state will be—it is determined.

We call this deterministic computation.

In a nondeterministic machine, several choices may exist for the next
state at any point.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 24 / 82

DFA vs. NFA

The difference between a deterministic finite automaton, abbreviated
DFA, and a nondeterministic finite automaton, abbreviated NFA, is as
follows.

First, every state of a DFA always has exactly one exiting transition
arrow for each symbol in the alphabet.

The nondeterministic automaton shown in Figure 1.27 violates that rule.

State q1 has one exiting arrow for 0, but it has two for 1; q2 has one
arrow for 0, but it has none for 1.

In an NFA a state may have zero, one, or many exiting arrows for each
alphabet symbol.

An NFA may have arrows labeled with members of the alphabet or ε.

Zero, one, or many arrows may exit from each state with the label ε.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 25 / 82

How does an NFA compute?

Suppose that we are running an NFA on an input string and come to a
state with multiple ways to proceed.
For example, say that we are in state q1 in NFA N1 and that the next
input symbol is a 1.
After reading that symbol, the machine splits into multiple copies of
itself and follows all the possibilities in parallel.
If the next input symbol doesn’t appear on any of the arrows exiting the
state occupied by a copy of the machine, that copy of the machine dies,
along with the branch of the computation associated with it.
Finally, if any one of these copies of the machine is in an accept state at
the end of the input, the NFA accepts the input string.
If a state with an ε symbol on an exiting arrow is encountered,
something similar happens.

Without reading any input, the machine splits into multiple copies, one

following each of the exiting ε-labeled arrows and one staying at the

current state.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 26 / 82

Deterministic and nondeterministic computations

Nondeterminism may be viewed as a kind of parallel computation
wherein multiple independent “processes” or “threads” can be running
concurrently.
Another way to think of a nondeterministic computation is as a tree of
possibilities.

The machine accepts if at least one of the computation branches ends in

an accept state, as shown in Figure 1.28.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 27 / 82

Sample runs of the NFA N1 shown in Figure 1.27

The computation of N1 on input 010110 is depicted in the following
figure.

Note that an ε arrow exits state q2.

As q4 is an accept state, N1 accepts this string.

What does N1 do on input 010?

By continuing to experiment in this way, you will see that N1 accepts all

strings that contain either 101 or 11 as a substring.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 28 / 82

Example 1.30

Let A be the language consisting of all strings over 0,1 containing a 1 in
the third position from the end (e.g., 01100 is in A but 0011 is not).

The above four-state NFA N2 recognizes A.

Every NFA can be converted into an equivalent DFA, but sometimes
that DFA may have many more states.

The smallest DFA for A contains eight states.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 29 / 82

Example 1.33

Consider the following NFA N3 that has an input alphabet {0}
consisting of a single symbol.
This machine demonstrates the convenience of having ε arrows.
It accepts all strings of the form 0k where k is a multiple of 2 or 3.
N3 accepts the strings ε, 00, 000, 0000, and 000000, but not 0 or 00000.
Think of the machine operating by initially guessing whether to test for
a multiple of 2 or a multiple of 3 and then checking whether its guess
was correct.

Of course, we could replace this machine by one that doesn’t have ε

arrows or even any nondeterminism at all, but the machine shown is the

easiest one to understand for this language.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 30 / 82

Formal Definition of a NFA

The formal definition of a nondeterministic finite automaton is similar to
that of a deterministic finite automaton.

Both have states, an input alphabet, a transition function, a start state,
and a collection of accept states.

However, they differ in one essential way: in the type of transition
function.

In a DFA the transition function takes a state and an input symbol and
produces the next state.

In an NFA the transition function takes a state and an input symbol or
the empty string and produces the set of possible next states.

For any set Q we write P(Q) to be the collection of all subsets of Q.
Here P(Q) is called the power set of Q.

For any alphabet Σ we write Σε to be Σ ∪ {ε}.
Now we can write the formal description of the type of the transition

function in an NFA as δ : Q× Σε → P(Q).

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 31 / 82

Formal Definition of a NFA

Definition 1.37

A nondeterministic finite automaton is a 5-tuple (Q,Σ, δ, q0, F).
1 Q is a finite set of states,

2 Σ is a finite alphabet,

3 δ : Q× Σε → P(Q) is the transition function,

4 q0 ∈ Q is the start state, and

5 F ⊆ Q is the set of accept states.

Example 1.38

The formal description of N1 is (Q,Σ, δ, q1, F), where · · · .

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 32 / 82

The formal definition of computation for an NFA

Let N = (Q,Σ, δ, q0, F) be an NFA and w a string over the alphabet Σ.

Then we say that N accepts w if we can write w as w = y1y2 · · · ym,

where each yi is a member of Σε, and a sequence of states r0, r1, . . . , rm
exists in Q with three conditions:

1 r0 = q0,
2 ri+1∈ δ(ri, yi+1), for i = 0, . . . ,m− 1, and
3 rm ∈ F .

Condition 1 says that the machine starts out in the start state.

Condition 2 says that state ri+1 is one of the allowable next states when
N is in state ri and reading yi+1.

Observe that δ(ri, yi+1) is the set of allowable next states and so we say
that ri+1 is a member of that set.

Finally, condition 3 says that the machine accepts its input if the last

state is an accept state.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 33 / 82

Equivalence of NFAs and DFAs

Deterministic and nondeterministic finite automata recognize the same
class of languages.

It is surprising because NFAs appear to have more power than DFAs, so
we might expect that NFAs recognize more languages.

It is useful because describing an NFA for a given language sometimes is
much easier than describing a DFA for that language.

Say that two machines are equivalent if they recognize the same language.

Theorem 1.39
Every nondeterministic finite automaton has an equivalent deterministic finite

automaton.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 34 / 82

Proof Idea

If a language is recognized by an NFA, then we must show the existence
of a DFA that also recognizes it.

The idea is to convert the NFA into an equivalent DFA that simulates
the NFA.

How would you simulate the NFA if you were pretending to be a DFA?

In the examples of NFAs you kept track of the various branches of the
computation by placing a finger on each state that could be active at
given points in the input.

All you needed to keep track of was the set of states having fingers on
them.

If k is the number of states of the NFA, it has 2k subsets of states.

Each subset corresponds to one of the possibilities that the DFA must
remember, so the DFA simulating the NFA will have 2k states.

Now we need to figure out which will be the start state and accept states
of the DFA, and what will be its transition function.

We can discuss this more easily after setting up some formal notation.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 35 / 82

Proof

Let N = (Q,Σ, δ, q0, F) be the NFA recognizing some language A.
We construct a DFA M = (Q′,Σ, δ′, q′0, F

′) recognizing A.
Before doing the full construction, let’s first consider the easier case
wherein N has no ε arrows. Later we take the ε arrows into account.

1 Q′ = P(Q).
Every state of M is a set of states of N . Recall that P(Q) is the set
of subsets of Q.

2 For R ∈ Q′ and a ∈ Σ, let δ′(R, a) = {q ∈ Q | q ∈ δ(r, a) for some
r ∈ R}. Another way for this expression is δ′(R, a) =

⋃
r∈R δ(r, a).

If R is a state of M , it is also a set of states of N . When M reads a
symbol a in state R, it shows where a takes each state in R.
Because each state may go to a set of states, we take the union of
all these sets.

3 q′0 = {q0}.
M starts in the state corresponding to the collection containing just
the start state of N .

4 F ′ = {R ∈ Q′ | R contains an accept state of N}.
The machine M accepts if one of the possible states that N could
be in at this point is an accept state.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 36 / 82

Proof: Now we need to consider the ε arrows

To do so we set up an extra bit of notation. For any state R of M we
define E(R) to be the collection of states that can be reached from R by
going only along ε arrows, including the members of R themselves.
Formally, for R ⊆ Q let E(R) = {q | q can be reached from R by
traveling along 0 or more ε arrows}.
Then we modify the transition function of M to place additional fingers
on all states that can be reached by going along ε arrows after every step.
Replacing δ(r, a) by E(δ(r, a)) achieves this effect.
Thus, δ′(R, a) = {q ∈ Q | q ∈ E(δ(r, a)) for some r ∈ R}.
Additionally we need to modify the start state of M to move the fingers
initially to all possible states that can be reached from the start state of
N along the ε arrows.
Changing q′0 to be E({q0}) achieves this effect.
We have now completed the construction of the DFA M that simulates
the NFA N .
The construction of M obviously works correctly. At every step in the
computation of M on an input, it clearly enters a state that corresponds
to the subset of states that N could be in at that point.

Thus our proof is complete.
Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 37 / 82

Every NFA can be converted into an equivalent DFA.

Corollary 1.40

A language is regular if and only if some nondeterministic finite automaton

recognizes it.

→: Because a regular language has a DFA recognizing it and any DFA is
also an NFA.

←: If an NFA recognizes some language, so does some DFA, and hence

the language is regular.

Example 1.41: converting an NFA N4 to a DFA

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 38 / 82

Example 1.41: converting an NFA N4 to a DFA

To construct a DFA D that is equivalent to N4, we first determine D’s
states.

N4 has three states, {1, 2, 3}, so we construct D with eight states, one
for each subset of N4’s states.

Thus D’s state set is {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}.
Next, we determine the start and accept states of D.

The start state is E({1}), the set of states that are reachable from 1 by
traveling along ε arrows, plus 1 itself.

An ε arrow goes from 1 to 3, so E({1}) = {1, 3}.
The new accept states are those containing N4’s accept state; thus {{1},
{1, 2}, {1, 3}, {1, 2, 3}}.
Finally, we determine D’s transition function.

Each of D’s states goes to one place on input a and one place on input b.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 39 / 82

Example 1.41: converting an NFA N4 to a DFA

In D, state {2} goes to {2, 3} on input a, because in N4, state 2 goes to
both 2 and 3 on input a.
State {2} goes to state {3} on input b, because in N4, state 2 goes only
to state 3 on input b.
State {1} goes to ∅ on a, because no a arrows exit it. It goes to {2} on b.
Note that the procedure in Theorem 1.39 specifies that we follow the ε
arrows after each input symbol is read.
State {3} goes to {1, 3} on a, because in N4, state 3 goes to 1 on a and 1
in turn goes to 3 with an ε arrow.
State {3} on b goes to ∅.
State {1, 2} on a goes to {2, 3} because 1 points at no states with a
arrows and 2 points at both 2 and 3 with a arrows.

State {1, 2} on b goes to {2, 3}. · · ·

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 40 / 82

Example 1.41: converting an NFA N4 to a DFA

We may simplify this machine by observing that no arrows point at
states {1} and {1, 2}, so they may be removed without affecting the
performance of the machine.

Doing so yields the following figure.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 41 / 82

Closure under the Regular Operations

Earlier we proved closure under union by simulating deterministically
both machines simultaneously via a Cartesian product construction.

We now give a new proof to illustrate the technique of nondeterminism.

Theorem 1.45
The class of regular languages is closed under the union operation.

We have regular languages A1 and A2 and want to prove that A1 ∪A2 is
regular.
The idea is to take two NFAs, N1 and N2 for A1 and A2, and combine
them into one new NFA, N .

Machine N must accept its input if either N1 or N2 accepts this input.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 42 / 82

Proof: Closure under Union

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1, and N2 = (Q2,Σ, δ2, q2, F2)
recognize A2.

Construct N = (Q,Σ, δ, q0, F) to recognize A1 ∪A2.

1 Q = {q0} ∪Q1 ∪Q2.
The states of N are all the states of N1 and N2, with the addition
of a new start state q0.

2 The state q0 is the start state of N .
3 The accept states F = F1 ∪ F2.

The accept states of N are all the accept states of N1 and N2. That
way N accepts if either N1 accepts or N2 accepts.

4 Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q1

δ2(q, a) q ∈ Q2

{q1, q2} q = q0 and a = ε
∅ q = q0 and a 6= ε

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 43 / 82

Closure under Concatenation

Theorem 1.47
The class of regular languages is closed under the concatenation operation.

We have regular languages A1 and A2 and want to prove that A1 ◦A2 is
regular.
The idea is to take two NFAs, N1 and N2 for A1 and A2, and combine
them into one new NFA, N .
Assign N ’s start state to be the start state of N1.
The accept states of N1 have additional ε arrows that allow
nondeterministically branching to N2 whenever N1 is in an accept state.

The accept states of N are the accept states of N2 only.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 44 / 82

Proof: Closure under Concatenation

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1, and N2 = (Q2,Σ, δ2, q2, F2)
recognize A2.

Construct N = (Q,Σ, δ, q1, F2) to recognize A1 ◦A2.

1 Q = Q1 ∪Q2.
The states of N are all the states of N1 and N2.

2 The state q1, is the same as the start state of N1.
3 The accept states F2 are the same as the accept states of N2.
4 Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q1 and q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q2} q ∈ F1 and a = ε
δ2(q, a) q ∈ Q2

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 45 / 82

Closure under Star Operation

Theorem 1.49
The class of regular languages is closed under the star operation.

We have regular languages A1 and want to prove that A∗1 also is regular.
We take an NFA N1 for A1 and modify it to recognize A∗1.
The resulting NFA N will accept its input whenever it can be broken
into several pieces and N1 accepts each piece.
We can construct N like N1 with additional ε arrows returning to the
start state from the accept states.
In addition we must modify N so that it accepts ε.

We add a new start state, which also is an accept state, and which has

an ε arrow to the old start state.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 46 / 82

Proof: Closure under Star Operation

Let N1 = (Q1,Σ, δ1, q1, F1) recognize A1.

Construct N = (Q,Σ, δ, q0, F) to recognize A∗1.

1 Q = {q0} ∪Q1.
The states of N are the states of N1 plus a new start state.

2 The state q0 is the new start state.
3 F = {q0} ∪ F1. The accept states are the old accept states plus the

new start state.
4 Define δ so that for any q ∈ Q and any a ∈ Σε,

δ(q, a) =

δ1(q, a) q ∈ Q1 and q 6∈ F1

δ1(q, a) q ∈ F1 and a 6= ε
δ1(q, a) ∪ {q1} q ∈ F1 and a = ε
{q1} q = q0 and a = ε
∅ q = q0 and a 6= ε

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 47 / 82

1.3 Regular Expressions

In arithmetic, we can use the operations + and × to build up expressions
such as (5 + 3)× 4.

Similarly, we can use the regular operations to build up expressions
describing languages, which are called regular expressions.

An example is: (0 ∪ 1)0∗.

The value of the arithmetic expression is the number 32.

The value of a regular expression is a language.

In this case, the value is the language consisting of all strings starting
with a 0 or a 1 followed by any number of 0s.

The symbols 0 and 1 are shorthand for the sets {0} and {1}. So (0 ∪ 1)
means ({0} ∪ {1}).
The value of this part is the language {0, 1}.
The part 0∗ means {0}∗, and its value is the language consisting of all
strings containing any number of 0s.

The concatenation symbol ◦ often is implicit in regular expressions.

Thus (0 ∪ 1)0∗ actually is shorthand for (0 ∪ 1) ◦ 0∗.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 48 / 82

1.3 Regular Expressions

Regular expressions have an important role in computer science
applications.
In applications involving text, users may want to search for strings that
satisfy certain patterns.

Text editors all provide mechanisms for the description of patterns by

using regular expressions.

Example 1.51

Another example of a regular expression is (0 ∪ 1)∗.

It starts with the language (0 ∪ 1) and applies the * operation.

The value of this expression is the language consisting of all possible
strings of 0s and 1s.

If Σ = {0, 1}, we can write Σ as shorthand for the regular expression
(0 ∪ 1).

More generally, if Σ is any alphabet, the regular expression Σ describes

the language consisting of all strings of length 1 over this alphabet, and

Σ∗ describes the language consisting of all strings over that alphabet.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 49 / 82

Formal Definition of a Regular Expression

Definition 1.52
Say that R is a regular expression if R is

1 a for some a in the alphabet Σ,
2 ε,
3 ∅,
4 (R1 ∪R2), where R1 and R2 are regular expressions,
5 (R1 ◦R2), where R1 and R2 are regular expressions, or
6 (R∗1), where R1 is a regular expression.

In items 1 and 2, the regular expressions a and ε represent the languages
{a} and {ε}, respectively.

In item 3, the regular expression ∅ represents the empty language.

In items 4, 5, and 6, the expressions represent the languages obtained by

taking the union or concatenation of the languages R1 and R2, or the

star of the language R1, respectively.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 50 / 82

Formal Definition of a Regular Expression

Don’t confuse the regular expressions ε and ∅.
The expression ε represents the language containing a single
string—namely, the empty string—whereas ∅ represents the language
that doesn’t contain any strings.

Parentheses in an expression may be omitted.

If they are, evaluation is done in the precedence order: star, then
concatenation, then union.

We let R+ be shorthand for RR∗. So R+ ∪ ε = R∗.

When we want to distinguish between a regular expression R and the
language that it describes, we write L(R) to be the language of R.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 51 / 82

Example 1.53

In the following instances we assume that the alphabet Σ is {0, 1}.
1 0∗10∗ = {w | w contains a single 1}.
2 Σ∗1Σ∗ = {w | w has at least one 1}.
3 Σ∗001Σ∗ = {w | w contains the string 001 as a substring}.
4 1∗(01+)∗ = {w | every 0 in w is followed by at least one 1}.
5 (ΣΣ)∗ = {w | w is a string of even length}.
6 (ΣΣΣ)∗ = {w | the length of w is a multiple of three}.
7 01 ∪ 10 = {01, 10}.
8 0Σ∗0 ∪ 1Σ∗1 ∪ 0 ∪ 1 = {w | w starts and ends with the same symbol}.
9 (0 ∪ ε)1∗ = 01∗ ∪ 1∗.

The expression 0 ∪ ε describes the language {0, ε}, so the concatenation
operation adds either 0 or ε before every string in 1∗.

10 (0 ∪ ε)(1 ∪ ε) = {ε, 0, 1, 01}.
11 1∗∅ = ∅. Concatenating the empty set to any set yields the empty set.
12 ∅∗ = {ε}.

The star operation puts together any number of strings from the

language to get a string in the result. If the language is empty, the star

operation can put together 0 strings, giving only the empty string.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 52 / 82

Regular Expressions

If we let R be any regular expression, we have the following identities.

R ∪ ∅ = R.

Adding the empty language to any other language will not change it.

R ◦ ε = R.

Joining the empty string to any string will not change it.

However, exchanging ∅ and ε in the preceding identities may cause the
equalities to fail.

R ∪ ε may not equal R.

For example, if R = 0, then L(R) = {0} but L(R ∪ ε) = {0, ε}.
R ◦ ∅ may not equal R.

For example, if R = 0, then L(R) = {0} but L(R ◦ ∅) = ∅.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 53 / 82

Regular Expressions

Regular expressions are useful tools in the design of compilers for
programming languages.

Elemental objects in a programming language, called tokens, such as the
variable names and constants, may be described with regular expressions.

For example, a numerical constant that may include a fractional part
and/or a sign may be described as a member of the language

(+ ∪ − ∪ ε)(D+ ∪D+.D∗ ∪D∗.D+)

where D = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} is the alphabet of decimal digits.

Examples of generated strings are: 72, 3.14159, +7., and −.01.

Once the syntax of the tokens of the programming language have been

described with regular expressions, automatic systems can generate the

lexical analyzer, the part of a compiler that initially processes the input

program.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 54 / 82

Equivalence with Finite Automata

Regular expressions and finite automata are equivalent in their
descriptive power.

This fact is surprising because finite automata and regular expressions
superficially appear to be rather different.

However, any regular expression can be converted into a finite
automaton that recognizes the language it describes, and vice versa.

Recall that a regular language is one that is recognized by some finite

automaton.

Theorem 1.54
A language is regular if and only if some regular expression describes it.

This theorem has two directions. We state and prove each direction as a

separate lemma.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 55 / 82

Equivalence with Finite Automata

Lemma 1.55
If a language is described by a regular expression, then it is regular.

Proof Idea
Say that we have a regular expression R describing some language A.

We show how to convert R into an NFA recognizing A.

By Corollary 1.40, if an NFA recognizes A then A is regular.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 56 / 82

Proof

Let’s convert R into an NFA N . We consider the six cases in the formal
definition of regular expressions.

R = a for some a in Σ. Then L(R) = {a}, and the following NFA
recognizes L(R).

Note that this machine fits the definition of an NFA but not that of
a DFA because it has some states with no exiting arrow for each
possible input symbol. Of course, we could have presented an
equivalent DFA here but an NFA is all we need for now, and it is
easier to describe.
Formally, N = ({q1, q2},Σ, δ, q1, {q2}), where we describe δ by
saying that δ(q1, a) = {q2} and that δ(r, b) = ∅ for r 6= q1, or b 6= a.
R = ε. Then L(R) = {ε}, and the following NFA recognizes L(R).
Formally, N = ({q1},Σ, δ, q1, {q1}), where δ(r, b) = ∅ for any r and b.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 57 / 82

Proof

Let’s convert R into an NFA N . We consider the six cases in the formal
definition of regular expressions.

R = ∅. Then L(R) = ∅, and the following NFA recognizes L(R).
Formally, N = ({q},Σ, δ, q, ∅), where δ(r, b) = ∅ for any r and b.

R = R1 ∪R2.
R = R1 ◦R2.
R = R∗1.
For the last three cases we use the constructions given in the proofs
that the class of regular languages is closed under the regular
operations.
In other words, we construct the NFA for R from the NFAs for R1

and R2 (or just R1 in case 6) and the appropriate closure
construction.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 58 / 82

Example 1.56

We convert the regular expression (ab ∪ a)∗ to an NFA in a sequence of
stages.

We build up from the smallest subexpressions to larger subexpressions.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 59 / 82

Example 1.58

In Figure 1.59, we convert the regular expression (a ∪ b)∗aba to an NFA.

A few of the minor steps are not shown.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 60 / 82

Lemma 1.60

Lemma 1.60
If a language is regular, then it is described by a regular expression.

Proof Idea
We need to show that, if a language A is regular, a regular expression
describes it.

Because A is regular, it is accepted by a DFA.

We describe a procedure for converting DFAs into equivalent regular
expressions.

We break this procedure into two parts, using a new type of finite
automaton called a generalized nondeterministic finite
automaton, GNFA.

First we show how to convert DFAs into GNFAs, and then GNFAs into

regular expressions.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 61 / 82

Proof Idea (continued)

Generalized nondeterministic finite automata (GNFA) are simply NFAs
wherein the transition arrows may have any regular expressions as labels,
instead of only members of the alphabet or ε.
GNFA reads blocks of symbols from the input, not necessarily just one
symbol at a time as in an ordinary NFA.
The GNFA moves along a transition arrow connecting two states by
reading a block of symbols from the input, which themselves constitute a
string described by the regular expression on that arrow.
A GNFA is nondeterministic and so may have several different ways to
process the same input string.

It accepts its input if its processing can cause the GNFA to be in an

accept state at the end of the input.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 62 / 82

Proof Idea (continued)

For convenience we require that GNFAs always have a special form that
meets the following conditions.

The start state has transition arrows going to every other state but
no arrows coming in from any other state.
There is only a single accept state, and it has arrows coming in
from every other state but no arrows going to any other state.
Furthermore, the accept state is not the same as the start state.
Except for the start and accept states, one arrow goes from every
state to every other state and also from each state to itself.

We can easily convert a DFA into a GNFA in the special form.

We simply add a new start state with an ε arrow to the old start state
and a new accept state with ε arrows from the old accept states.

If any arrows have multiple labels (or if there are multiple arrows going
between the same two states in the same direction), we replace each with
a single arrow whose label is the union of the previous labels.

Finally, we add arrows labeled ∅ between states that had no arrows.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 63 / 82

Proof Idea (continued)

Now we show how to convert a GNFA into a regular expression.

Say that the GNFA has k states.

Then, because a GNFA must have a start and an accept state and they
must be different from each other, we know that k > 2.

If k > 2, we construct an equivalent GNFA with k − 1 states.

This step can be repeated on the new GNFA until it is reduced to two
states.

If k = 2, the GNFA has a single arrow that goes from the start state to
the accept state.

The label of this arrow is the equivalent regular expression.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 64 / 82

Proof Idea (continued)

The crucial step is in constructing an equivalent GNFA with one fewer
state when k > 2.
We do so by selecting a state, ripping it out of the machine, and
repairing the remainder so that the same language is still recognized.
Any state will do, provided that it is not the start or accept state.
Let’s call the removed state qrip.
After removing qrip we repair the machine by altering the regular
expressions that label each of the remaining arrows.
The new labels compensate for the absence of qrip by adding back the
lost computations.

The new label going from a state qi to a state qj is a regular expression

that describes all strings that would take the machine from qi to qj
either directly or via qrip.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 65 / 82

Proof Idea (continued)

In the old machine if qi goes to qrip with an arrow labeled R1, qrip goes
to itself with an arrow labeled R2, qrip goes to qj with an arrow labeled
R3, and qi goes to qj with an arrow labeled R4, then in the new machine
the arrow from qi to qj gets the label

(R1)(R2)∗(R3) ∪ (R4).

We make this change for each arrow going from any state qi to any state
qj , including the case where qi = qj .

The new machine recognizes the original language.

We skip the formal proof in this class.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 66 / 82

Example 1.66

In this example we use the preceding algorithm to convert a DFA into a
regular expression.

We begin with the two-state DFA in Figure 1.67(a).

In Figure 1.67(b) we make a four-state GNFA by adding a new start
state and a new accept state, called s and a.

To avoid cluttering up the figure, we do not draw the arrows labeled ∅,
even though they are present.

Note that we replace the label a, b on the self-loop at state 2 on the DFA

with the label a ∪ b at the corresponding point on the GNFA.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 67 / 82

Example 1.66

In Figure 1.67(c) we remove state 2, and update the remaining arrow
labels.
In this case the only label that changes is the one from 1 to a.
In part (b) it was ∅, but in part (c) it is b(a ∪ b)∗.
In Figure 1.67(d) we remove state 1 from part (c) and follow the same
procedure.
Because only the start and accept states remain, the label on the arrow
joining them is the regular expression that is equivalent to the original
DFA.
What about removing state 1 first?

Study Example 1.68 by yourself.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 68 / 82

1.4 Nonregular Languages

To understand the power of finite automata you must also understand
their limitations.

In this section we show how to prove that certain languages cannot be
recognized by any finite automaton.

Let’s take the language B = {0n1n | n ≥ 0}.
If we attempt to find a DFA that recognizes B, we discover that the
machine seems to need to remember how many 0s have been seen so far
as it reads the input.

Because the number of 0s isn’t limited, the machine will have to keep
track of an unlimited number of possibilities.

But it cannot do so with any finite number of states.

C = {w | w has an equal number of 0s and 1s}.
Next, we present a method for proving that languages such as B are not

regular.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 69 / 82

The Pumping Lemma for Regular Languages

Our technique for proving nonregularity stems from a theorem about
regular languages, traditionally called the pumping lemma.

This theorem states that all regular languages have a special property.

If we can show that a language does not have this property, we are
guaranteed that it is not regular.

The property states that all strings in the language can be “pumped” if
they are at least as long as a certain special value, called the pumping
length.

That means each such string contains a section that can be repeated any

number of times with the resulting string remaining in the language.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 70 / 82

The Pumping Lemma for Regular Languages

Theorem 1.70: Pumping lemma

If A is a regular language, then there is a number p (the pumping length)

where, if s is any string in A of length at least p, then s may be divided into

three pieces, s = xyz, satisfying the following conditions:

1 for each i ≥ 0, xyiz ∈ A,

2 |y| > 0, and

3 |xy| ≤ p.

Recall the notation where |s| represents the length of string s, yi means
that i copies of y are concatenated together, and y0 equals ε.

When s is divided into xyz, either x or z may be ε, but condition 2 says
that y 6= ε.

Condition 3 is an extra technical condition that we occasionally find

useful when proving certain languages to be nonregular. See Example

1.74 for an application of condition 3.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 71 / 82

Proof Idea

Let M = (Q,Σ, δ, q1, F) be a DFA that recognizes A.

We assign the pumping length p to be the number of states of M .

We show that any string s in A of length at least p may be broken into
the three pieces xyz satisfying our three conditions.

What if no strings in A are of length at least p?

Then our task is even easier because the theorem becomes vacuously
true: Obviously the three conditions hold for all strings of length at least
p if there aren’t any such strings.

If s in A has length at least p, consider the sequence of states that M
goes through when computing with input s.

It starts with q1, the start state, then goes to, say, q3, then, say, q20, then
q9, and so on, until it reaches the end of s in state q13.

With s in A, we know that M accepts s, so q13 is an accept state.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 72 / 82

Proof Idea

If we let n be the length of s, the sequence of states q1, q3, q20, q9, . . . , q13
has length n+ 1.

Because n is at least p, we know that n+ 1 is greater than p, the number
of states of M .

Therefore the sequence must contain a repeated state.

This result is an example of the pigeonhole principle, a fancy name
for the rather obvious fact that if p pigeons are placed into fewer than p
holes, some hole has to have more than one pigeon in it.

State q9 is the one that repeats.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 73 / 82

Proof Idea

We now divide s into the three pieces x, y, and z.

Piece x is the part of s appearing before q9, piece y is the part between
the two appearances of q9, and piece z is the remaining part of s, coming
after the second occurrence of q9.

So x takes M from the state q1, to q9, y takes M from q9 back to q9 and

z takes M from q9 to the accept state q13.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 74 / 82

Proof Idea

Let’s see why this division of s satisfies the three conditions.

Suppose that we run M on input xyyz.

We know that x takes M from q1, to q9, and then the first y takes it
from q9 back to q9, as does the second y, and then z takes it to q13.

With q13 being an accept state, M accepts input xyyz.

Similarly, it will accept xyiz for any i ≥ 0.

For the case i = 0, xyiz = xz, which is accepted for similar reasons.

That establishes condition 1.

Checking condition 2, we see that |y| > 0, as it was the part of s that
occurred between two different occurrences of state q9.

In order to get condition 3, we make sure that q9 is the first repetition in
the sequence.

By the pigeonhole principle, the first p+ 1 states in the sequence must
contain a repetition.

Therefore |xy| ≤ p.
For the formal proof, you read the textbook.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 75 / 82

The Pumping Lemma for Regular Languages

To use the pumping lemma to prove that a language B is not regular,
first assume that B is regular in order to obtain a contradiction.

Then use the pumping lemma to guarantee the existence of a pumping
length p such that all strings of length p or greater in B can be pumped.

Next, find a string s in B that has length p or greater but that cannot be
pumped.

Finally, demonstrate that s cannot be pumped by considering all ways of
dividing s into x, y, and z (taking condition 3 of the pumping lemma into
account if convenient) and, for each such division, finding a value i where
xyiz 6∈ B.

The existence of s contradicts the assumption that B were regular.

Hence B cannot be regular.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 76 / 82

Example 1.73: Let B be the language {0n1n | n ≥ 0}
We use the pumping lemma to prove that B is not regular. The proof is
by contradiction.
Assume to the contrary that B is regular.
Let p be the pumping length given by the pumping lemma.
Choose s to be the string 0p1p.
Because s is a member of B and s has length more than p, the pumping
lemma guarantees that s can be split into three pieces, s = xyz, where
for any i ≥ 0 the string xyiz is in B.
We consider three cases to show that this result is impossible.

1 The string y consists only of 0s. In this case the string xyyz has
more 0s than 1s and so is not a member of B, violating condition 1
of the pumping lemma. This case is a contradiction.

2 The string y consists only of 1s. This case also gives a contradiction.
3 The string y consists of both 0s and 1s. In this case the string xyyz

may have the same number of 0s and 1s, but they will be out of
order with some 1s before 0s. Hence it is not a member of B, which
is a contradiction.

Note that we can simplify this argument by applying condition 3 of the

pumping lemma to eliminate cases 2 and 3.
Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 77 / 82

Example 1.74

Let C = {w | w has an equal number of 0s and 1s}.
We use the pumping lemma to prove that C is not regular.

Assume that C is regular.

Let p be the pumping length given by the pumping lemma.

As in Example 1.73, let s be the string 0p1p.

With s being a member of C and having length more than p, the
pumping lemma guarantees that s can be split into three pieces, s = xyz,
where for any i ≥ 0 the string xyiz is in C.

We would like to show that this outcome is impossible. But wait, it is
possible!

If we let x and z be the empty string and y be the string 0p1p, then xyiz
always has an equal number of 0s and 1s and hence is in C.

So it seems that s can be pumped.

Here condition 3 in the pumping lemma is useful.

It stipulates that when pumping s it must be divided so that |xy| ≤ p.
If |xy| ≤ p, then y must consist only of 0s, so xyyz 6∈ C.

Therefore s cannot be pumped. That gives us the desired contradiction.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 78 / 82

Example 1.74

Selecting the string s in this example required more care than in
Example 1.73.

If we had chosen s = (01)p instead, we would have run into trouble
because we need a string that cannot be pumped and that string can be
pumped, even taking condition 3 into account.

One way to do so sets x = ε, y = 01, and z = (01)p−1.

Then xyiz ∈ C for every value of i.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 79 / 82

Example 1.75

Let F = {ww | w ∈ {0, 1}∗}.
We show that F is nonregular, using the pumping lemma.

Assume to the contrary that F is regular.

Let p be the pumping length given by the pumping lemma.

Let s be the string 0p10p1.

Because s is a member of F and s has length more than p, the pumping
lemma guarantees that s can be split into three pieces, s = xyz,
satisfying the three conditions of the lemma.

We show that this outcome is impossible.

With condition 3, the proof follows because y must consist only of 0s, so
xyyz 6∈ F .

Condition 3 is once again crucial, because without it we could pump s if
we let x and z be the empty string.

Even though 0p0p is a member of F , it fails to demonstrate a

contradiction because it can be pumped.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 80 / 82

Example 1.76: Let D = {1n2 | n ≥ 0}.
We use the pumping lemma to prove that D is not regular.
Assume to the contrary that D is regular.
Let p be the pumping length given by the pumping lemma.
Let s be the string 1p

2

.
Because s is a member of D and s has length at least p, the pumping
lemma guarantees that s can be split into three pieces, s = xyz, where
for any i ≥ 0 the string xyiz is in D.
Now consider the two strings xyz and xy2z.
These strings differ from each other by a single repetition of y, and
consequently their lengths differ by the length of y.
By condition 3 of the pumping lemma, |xy| ≤ p and thus |y| ≤ p.
We have |xyz| = p2 and so |xy2z| ≤ p2 + p.
p2 + p < p2 + 2p+ 1 = (p+ 1)2. So, |xy2z| < (p+ 1)2.
Moreover, condition 2 implies that y is not the empty string and so
|xy2z| > p2.
Therefore the length of xy2z lies strictly between the consecutive perfect
squares p2 and (p+ 1)2; that is, p2 < |xy2z| < (p+ 1)2.

We arrive at the contradiction xy2z 6∈ D and conclude that D is not

regular.
Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 81 / 82

Example 1.77: Let E = {0i1j | i > j}.

Sometimes “pumping down” is useful when we apply the pumping
lemma.
Assume that E is regular.
Let p be the pumping length for E given by the pumping lemma.
Let s = 0p+11p.
s can be split into xyz, satisfying the conditions of the pumping lemma.
By condition 3, y consists only of 0s.
Let’s examine the string xyyz to see whether it can be in E.
Adding an extra copy of y increases the number of 0s.
But, E contains all strings in 0∗1∗ that have more 0s than 1s, so
increasing the number of 0s will still give a string in E.
No contradiction occurs. We need to try something else.
The pumping lemma states that xyiz ∈ E even when i = 0, so let’s
consider the string xy0z = xz.
Removing string y decreases the number of 0s in s.
Recall that s has just one more 0 than 1.

Therefore xz cannot have more 0s than 1s, so it cannot be a member of

E. Thus we obtain a contradiction.

Wonhong Nam (Konkuk Univ.) Theory of Computation September 13, 2017 82 / 82

	Introduction
	1.1 Finite Automata
	1.2 Nondeterminism
	1.3 Regular Expressions
	1.4 Nonregular Languages

